國立成功大學一〇一學年度碩士班招生考試試題

共11頁,第1頁

系所組別: 材料科學及工程學系

考試科目: B科目

101

編號:

考試日期:0225,節次:2

B卷:普通化學(30題[1-30],每題1分)、材料熱力學(20題[31-50],每題1.5分)、有機化學(30題 [51-80],每題1分)。滿分90分。倒扣至零分為止。

※本卷全部皆為選擇題,請以2B鉛筆劃卡作答。

科目名稱: 普通化學 每題為4選1,每一題答對得1分,答錯倒扣0.25分。

1. Which of the followings statement is correct in regarding to the referred reaction?

- (A) CaO is acid in this reaction CaO + $H_2O \rightarrow Ca^{2+} + 2 OH^{-1}$
- (B) H₂O is acid in this reaction CaO + H₂O \rightarrow Ca²⁺ + 2 OH⁻
- \bigcirc HCO₃⁻ is base in the reaction HCO₃⁻ + NH₃ \rightarrow NH⁴⁺ + CO₃²⁻
- $\ensuremath{\textcircled{}}$ none of the above
- 2. Which of the following contains the smallest number of water molecules?
 - (A) 1.0 g of liquid water at 0° C (B) 1.0 g of solid water at 0° C
 - O 1.0 ml of solid water at 0°C O 1.0 ml of liquid water at 0°C.
- The boiling temperature of pure water is 100°C at 1 atm. The boiling point of the water solution of alcohol should be,

(A) >100°C (B) =100°C (C) <100°C (D) no basis for judgement

- 4. What will happen when milk is poured over sour fruit?

 A make the fruit disslove B becoming clear C become solid D become curdle
- 5. Which of the following water solutions has the smallest pH value?
 (A) 0.01N NaOH
 (B) 0.002N HNO₃
 (C) 0.01N HCl
 (D) 0.01N C₂H₅OH
- 6. 1 g of Zn(OH)₂ in 1 liter of water is not soluble. How would you do to dissolve the Zn(OH)₂?
 A add another 1 liter of water
 B cook the solution
 - © add 1N of NaOH solution © add 1 N of HNO₃ solution
- 7. The splitting of a 12C atom into two 6Li atoms will be,A endothermicB exothermicno heat involvednot possible

(背面仍有題目,請繼續作答) -1-

編號: 101	國立成功大學	一〇一學年度碩士班招	3生考试试题	共11頁,第2頁
糸所組別: 材料科學	及工程學系			
				考試日期:0225,節次:
8 Which of the follo	wing compounds is wat	er insoluble?		
A KCl	B LiCl	\bigcirc Sr(NO ₃) ₂	D Bas	SO_4
9. Which of the follo	owing is the most active	reducing agent?		
\bigcirc Cs ⁺	(B) F ₂	© Br	Ø Na	+ !
10. Which of the fol	lowing is a correct state	ment?		
(A) HCl is more in	onic than HF	^(B) BeCl ₂ is more	ionic than BaCl ₂	
© AlCl ₃ is more	e ionic than CsCl		ove	
11. Please make the	following conversion: x	°C to Kelvin temperatur	res.	
(x + 273) K	🛞 (x - 32) K	© (x + 100) K	D (x	+ 32) K.
the three curves	except the triple point. (B) 3	© 4	D 2.	
13. What is molarity of NaCl in 1kg o	y of Na ⁺ in a solution of f seawater) is 5.8 if the s	NaCl (AW of Na: 23g, A solution has a density of	W of Cl: 35g) wh 1g/ml? Molarity (ose salinity (grams M) is defined as the
number of moles	of solute in a liter of sol	lution (mole/liter).		
	B 0.01M	© 1M	D 0.1M.	
14. The element silv with atomic mas calculate the rel	ver consists in nature of t ss 108.905 amu. Assume ative amounts of ¹⁰⁷ Ag a	two isotopes, ¹⁰⁷ Ag with the accepted atomic wei nd ¹⁰⁹ Ag in this case.	atomic mass 106. ight of Ag is 107.9	905 amu, and ¹⁰⁹ Ag 905. Please
A 49%, 51%	B 60%, 40%	© 30%, 70%	D 50%, 50%	6
15. Calculate the p	H of a solution produced	d by mixing 0.4 L of 0.1	M NH ₄ Cl with 0.	2 L of 0.1 M NaOH.
Hint: $NH_4^+_{(aq)} \rightleftharpoons$	$NH_{3(aq)} + H^{+}_{(aq)}, k_a = 5 x$	× 10 ⁻¹⁰ ;		
$NH_{3(aq)} + H_2C$	$\mathcal{O}_{(l)} = \mathcal{O}_{(aq)} + \mathcal{O}_{(aq)} + \mathcal{O}_{(aq)}$	$k_{\rm b} = 2 \times 10^{-5}$.	A 10	
(A) 5.5	E I	0 9.3	U 12.	

系所细别: 材料科學及	國工成功大学一〇)一學年度碩士班招生考試試題	共一门頁,第3頁
	工程學系		
考試科目: B科目			考試日期:0225·節次:2
16. The chemistry of h	ydrocarbon derivatives is	often dominated by the nature of th	eir functional groups.
Please name the fo	llowing popular functional	groups: R-COH, R-OH, and R-CO	OR ¹ . Please note R
and R' represent of	rganic groups.		
Aldehyde, Alco	hol, and Ester	Aldehyde, Alkene, and Ether	
© Ketone, Alcoho	l, and Carboxylic acid	Ester, Alcohol, and Aldehyde.	
17. Please identify the	equilibrium-constant expr	ession for the following reaction, a	nd whether the
reaction is homogeneous	ous or heterogeneous.		
$NH_4NO_{2(s)} \implies N_{2(g)}$	$+ 2H_2O_{(g)}$		
(A) $K = [N_2][H_2O]^2 / [$	NH ₄ NO ₂], homogeneous	(B) $K = [N_2][H_2O]^2 / [NH_4NO_2],$	heterogeneous
\bigcirc K = [N ₂][H ₂ O] ² , h	omogeneous		us.
18. The yellow light g	iven off by a sodium lamp	has a wavelength of 600 nm. What	is the corresponding
frequency? Hint: th	e speed of light: 3×10^8 m/	/s.	
\bigcirc 5 x 10 ¹⁴ Hz	$\textcircled{B} 10^{15} \text{Hz}$	\bigcirc 5 x 10 ¹³ Hz \bigcirc 10 ¹⁶	Hz.
19. Copper (Cu), silicated respectively. From Please identify their	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas	re typical metal, semiconductor, and I, they can be readily distinguished ing order.	d insulator, by their energy gaps.
 19. Copper (Cu), silicative respectively. From Please identify their A C > Si > Cu 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas B Cu > Si > C	re typical metal, semiconductor, and il, they can be readily distinguished ing order. \bigcirc Si > C > Cu \bigcirc C >	d insulator, by their energy gaps. Cu > Si.
 19. Copper (Cu), silicative respectively. From Please identify their C > Si > Cu 20. Allotropes are difficult allotrope of carbon 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas B Cu > Si > C Cerent forms of the same elector	re typical metal, semiconductor, and d, they can be readily distinguished sing order. \bigcirc Si > C > Cu \bigcirc C > ement in the same state. Please iden	d insulator, by their energy gaps. Cu > Si. tify which is not the
 19. Copper (Cu), silicative respectively. From Please identify their A C > Si > Cu Allotropes are difful allotrope of carbon A diamond 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas B Cu > Si > C Ferent forms of the same ele (C). B carbon nanotube	re typical metal, semiconductor, and il, they can be readily distinguished ing order. \bigcirc Si > C > Cu \bigcirc C > ement in the same state. Please iden \bigcirc graphite \bigcirc c	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide.
 19. Copper (Cu), silicate respectively. From Please identify their (A) C > Si > Cu 20. Allotropes are difful allotrope of carbon (A) diamond 21. Consider a binary of the followings 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas (B) Cu > Si > C Ferent forms of the same ele (C). (B) carbon nanotube system (components A and is true:	re typical metal, semiconductor, and it, they can be readily distinguished ing order. \bigcirc Si > C > Cu \bigcirc C > ement in the same state. Please iden \bigcirc graphite \bigcirc c d B) with two phases (α and β) in eq	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide. uilibrium. Which one
 19. Copper (Cu), silicative respectively. From Please identify their (A) C > Si > Cu 20. Allotropes are difful allotrope of carbon (A) diamond 21. Consider a binary of the followings (A) a_A^a = a_B^a, 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas (B) $Cu > Si > C$ Ferent forms of the same ele (C). (B) carbon nanotube system (components A and is true: (B) $a_A^{\alpha} = a_A^{\beta}$,	re typical metal, semiconductor, and it, they can be readily distinguished ing order. \bigcirc Si > C > Cu \bigcirc C > ement in the same state. Please iden \bigcirc graphite \bigcirc c d B) with two phases (α and β) in eq \bigcirc $a_A^{\alpha} \neq a_A^{\beta}$, \bigcirc	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide. uilibrium. Which one $\mathfrak{D} \ a_B^{\alpha} \neq a_B^{\beta}.$
 19. Copper (Cu), silicates respectively. From Please identify their A C > Si > Cu 20. Allotropes are difful allotrope of carbon A diamond 21. Consider a binary of the followings A aA = aB^a, 22. In two-component 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas (B) $Cu > Si > C$ Ferent forms of the same ele (C). (B) carbon nanotube system (components A and is true: (B) $a_A{}^{\alpha} = a_A{}^{\beta}$, system, the maximum nur	re typical metal, semiconductor, and it, they can be readily distinguished ing order. (C) Si > C > Cu (D) C > ement in the same state. Please iden (C) graphite (D) c d B) with two phases (α and β) in eq (C) $a_A^{\alpha} \neq a_A^{\beta}$, (C) mber of phases can co-exist at a fixed	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide. uilibrium. Which one $\mathfrak{D} a_B^{\alpha} \neq a_B^{\beta}$.
 19. Copper (Cu), silicates respectively. From Please identify their (A) C > Si > Cu 20. Allotropes are difful allotrope of carbon (A) diamond 21. Consider a binary of the followings (A) a_A^a = a_B^a, 22. In two-component (A) 0 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas (B) $Cu > Si > C$ Ferent forms of the same electron (C). (B) carbon nanotube system (components A and is true: (B) $a_A{}^{\alpha} = a_A{}^{\beta}$, system, the maximum nur (B) 1	re typical metal, semiconductor, and it, they can be readily distinguished ing order. (C) Si > C > Cu (D) C > ement in the same state. Please iden (C) graphite (D) c d B) with two phases (α and β) in eq (C) $a_A^{\alpha} \neq a_A^{\beta}$, (Q) mber of phases can co-exist at a fixe (C) 2 (D)	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide. uilibrium. Which one $a a a^{\alpha} \neq a a^{\beta}$. ed pressure is 3 3
 19. Copper (Cu), silicates respectively. From Please identify their A C > Si > Cu 20. Allotropes are different allotrope of carbon A diamond 21. Consider a binary of the followings A a^A = a^A_B, 22. In two-component A 0 23. In the electroplate carbox of the silver best of the silver be	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas (B) Cu > Si > C Ferent forms of the same ele (C). (B) carbon nanotube system (components A and is true: (B) $a_A{}^{\alpha} = a_A{}^{\beta}$, system, the maximum nur (B) 1 ing of Cu in CuSO ₄ solution	re typical metal, semiconductor, and it, they can be readily distinguished ing order. (C) Si > C > Cu (D) C > ement in the same state. Please iden (C) graphite (D) c d B) with two phases (α and β) in eq (C) $a_A^{\alpha} \neq a_A^{\beta}$, (C) mber of phases can co-exist at a fixe (C) 2 (C) 2 (C) and (C) and (C	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide. uilibrium. Which one $\mathfrak{D} \ a_B^{\alpha} \neq a_B^{\beta}$. ed pressure is $\mathfrak{D} \ 3$ ed when 1.93 x 10 ⁵
 19. Copper (Cu), silicates respectively. From Please identify their (A) C > Si > Cu 20. Allotropes are different allotrope of carbon (A) diamond 21. Consider a binary of the followings (A) a_A^α = a_B^α, 22. In two-component (A) 0 23. In the electroplate coulombs of electron (D) 0.5 	on (Si), and diamond (C) a the molecular orbital mode r energy gaps in an decreas (B) Cu > Si > C Ferent forms of the same ele (C). (B) carbon nanotube system (components A and is true: (B) $a_A^{\alpha} = a_A^{\beta}$, c system, the maximum nur (B) 1 ing of Cu in CuSO ₄ solution ic charges are passed throu	re typical metal, semiconductor, and il, they can be readily distinguished ing order. (C) Si > C > Cu (D) C > ement in the same state. Please iden (C) graphite (D) c d B) with two phases (α and β) in eq (C) $a_A^{\alpha} \neq a_A^{\beta}$, (C) mber of phases can co-exist at a fixe (C) 2 (C) on, how many moles of Cu is reduced gh the electrolytic cell?	d insulator, by their energy gaps. Cu > Si. tify which is not the arbon oxide. uilibrium. Which one $\mathfrak{D} \ a_B^{\alpha} \neq a_B^{\beta}$. ed pressure is $\mathfrak{D} \ 3$ ed when 1.93 x 10 ⁵

(背面仍有題目,請繼續作答) -3-

象所組別: 材料科學及工程學系 考試科目: B科目 24. Which of the following reaction could do work of expansion on its surroundings?	編號: 101	國立成功大學一〇)一學年度碩士班招生考試	代試題 共1/頁,第4頁
考試科目: B科目 考試日期: 0225 · 節次 24. Which of the following reaction could do work of expansion on its surroundings? $\triangle CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$, (B) CaCO ₃ (s) $\rightarrow CaO(s) + CO_2(g)$, (C) $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$, (D) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$. 25. The mass of a proton is $\triangle 1.67 \times 10^{-27} \text{ kg}$, (B) $9.11 \times 10^{-27} \text{ kg}$, (C) $1.00 \times 10^{-24} \text{ g}$, (D) 1 g. 26. A sodium atom has 11 electrons. How many protons does it contain? $\triangle 11$, (B) 12, (C) 23, (D) 24. 27. The formula of potassium hydrogen sulfite is given as $\triangle KHS_2$, (B) KHSO ₃ , (C) KHSO ₄ , (D) KHS ₂ O ₃ . 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? $\triangle 36.5 \text{ g}$ (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (\triangle endothermic (B) exothermic (C) at equilibrium, (D) none of the above.	系所組別: 材料科學及工程	呈學系		
 24. Which of the following reaction could do work of expansion on its surroundings? (A)CH₄(g) + 2 O₂(g) → CO₂(g) + 2H₂O(g), (B)CaCO₃(s) → CaO(s) + CO₂(g), (C)(C) 2CO(g) + O₂(g) → 2CO₂(g), (D)2Mg(s) + O₂(g) → 2MgO(s). 25. The mass of a proton is (A) 1.67 x 10⁻²⁷ kg, (B) 9.11 x 10⁻²⁷ kg, (C) 1.00 x 10⁻²⁴ g, (D) 1 g. 26. A sodium atom has 11 electrons. How many protons does it contain? (A) 11, (B) 12, (C) 23, (D) 24. 27. The formula of potassium hydrogen sulfite is given as (A) KHS₂, (B) KHSO₃, (C) KHSO₄, (D) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	考試科日: B科目			考試日期:0225,節次:2
 24. Which of the following reaction could do work of expansion on its surroundings? (a) CH₄(g) + 2 O₂(g) → CO₂(g) + 2H₂O(g), (b) CaCO₃(s) → CaO(s) + CO₂(g), (c) (C) 2CO(g) + O₂(g) → 2CO₂(g), (d) 2Mg(s) + O₂(g) → 2MgO(s). 25. The mass of a proton is (a) 1.67 x 10⁻²⁷ kg, (b) 9.11 x 10⁻²⁷ kg, (c) 1.00 x 10⁻²⁴ g, (d) 1 g. 26. A sodium atom has 11 electrons. How many protons does it contain? (a) 11, (b) 12, (c) 23, (d) 24. 27. The formula of potassium hydrogen sulfite is given as (a) KHS₂, (b) KHSO₃, (c) KHSO₄, (d) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (a) 36.5 g (b) 18.3 g (c) 0.56 g (d) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (a) endothermic (b) exothermic (c) at equilibrium, (d) none of the above. 				
	24. Which of the followin	ig reaction could do wo	ork of expansion on its surro	undings?
$ (\bigcirc (C) \ 2CO(g) + O_2(g) \rightarrow 2CO_2(g), \qquad (\bigcirc 2Mg(s) + O_2(g) \rightarrow 2MgO(s). $ 25. The mass of a proton is ($\bigotimes \ 1.67 \ge 10^{-27} \ge g, \qquad (\bigcirc \ 9.11 \ge 10^{-27} \ge g, \qquad (\bigcirc \ 1.00 \ge 10^{-24} \ge g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \le g, \qquad (\bigcirc \ 1 \le 1.00 \ge 10^{-24} \ge 10^{-24} \le 1.00 \ge 10^{-24} \le 1.00 \ge 10^{-24} \le 1.00 \ge 10^{-24} \ge 10^{-24} \le 1.00 \ge 10^{-24} \ge 10^{-24} \le 1.00 \ge 10^{-24} \ge 10^{-2$	$(ACH_4(g) + 2 O_2(g)) \rightarrow$	$\mathrm{CO}_2(\mathrm{g}) + 2\mathrm{H}_2\mathrm{O}(\mathrm{g}),$	$(B)CaCO_3(s) \rightarrow CaO(s) + O(s)$	$CO_2(g),$
 25. The mass of a proton is (A) 1.67 x 10⁻²⁷ kg, (B) 9.11 x 10⁻²⁷ kg, (C) 1.00 x 10⁻²⁴ g, (D) 1 g. 26. A sodium atom has 11 electrons. How many protons does it contain? (A) 11, (B) 12, (C) 23, (D) 24. 27. The formula of potassium hydrogen sulfite is given as (A) KHS₂, (B) KHSO₃, (C) KHSO₄, (D) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	$(C) 2CO(g) + O_2(g) -$	\rightarrow 2CO ₂ (g),	$\textcircled{D}2Mg(s) + O_2(g) \rightarrow 2Mg$	3O(s).
 (A) 1.67 x 10⁻²⁷ kg, (B) 9.11 x 10⁻²⁷ kg, (C) 1.00 x 10⁻²⁴ g, (D) 1 g. 26. A sodium atom has 11 electrons. How many protons does it contain? (A) 11, (B) 12, (C) 23, (D) 24. 27. The formula of potassium hydrogen sulfite is given as (A) KHS₂, (B) KHSO₃, (C) KHSO₄, (D) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	25. The mass of a proton	is		
 26. A sodium atom has 11 electrons. How many protons does it contain? (A) 11, (B) 12, (C) 23, (D) 24. 27. The formula of potassium hydrogen sulfite is given as (A) KHS₂, (B) KHSO₃, (C) KHSO₄, (D) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	(A) $1.67 \times 10^{-27} \text{ kg},$	(B) 9.11 x 10^{-27} kg,	\bigcirc 1.00 x 10 ⁻²⁴ g,	D 1 g.
 A solution also if electronis. How many protons does it contain. (A) 11, (B) 12, (C) 23, (D) 24. 27. The formula of potassium hydrogen sulfite is given as (A) KHS₂, (B) KHSO₃, (C) KHSO₄, (D) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	26 A sodium atom has 1	electrons How many	protons does it contain?	
 27. The formula of potassium hydrogen sulfite is given as (a) KHS₂, (b) KHSO₃, (c) KHSO₄, (d) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (a) 36.5 g (b) 18.3 g (c) 0.56 g (d) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (a) endothermic (b) exothermic (c) at equilibrium, (d) none of the above. 	(A) 11	(B) 12		D 24
 27. The formula of potassium hydrogen sulfite is given as A KHS₂, B KHSO₃, C KHSO₄, D KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? A 36.5 g B 18.3 g C 0.56 g D 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of A endothermic B exothermic C at equilibrium, D none of the above. 	U II,	U 12,	3 23,	♥ 21.
 (A) KHS₂, (B) KHSO₃, (C) KHSO₄, (D) KHS₂O₃. 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	27. The formula of potass	sium hydrogen sulfite is	s given as	
 28. What mass of hydrogen can be produced in HCl solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	(A) KHS ₂ ,	B KHSO ₃ ,	© KHSO4,	\mathbb{D} KHS ₂ O ₃ .
 28. What mass of hydrogen can be produced in HCI solution if 15A of current is passed for 1.0 h? (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 				
 (A) 36.5 g (B) 18.3 g (C) 0.56 g (D) 0.28g. 	28. What mass of hydrog $28.$	en can be produced in l	HCI solution if 15A of curre	int is passed for 1.0 h?
 29. The enthalpy change of a specific reaction is -890 kJ. This reaction is a process of (A) endothermic (B) exothermic (C) at equilibrium, (D) none of the above. 	(A) 36,5 g	(B) 18.3 g	© 0.56 g	(D) 0.28g.
A endothermic B exothermic C at equilibrium, D none of the above.	29. The enthalpy change	of a specific reaction is	-890 kJ. This reaction is a r	process of
	(A) endothermic	B exothermic	© at equilibrium,	D none of the above.
30. Estimate the pH of 2.0 M solution of H_2SO_4 .	30. Estimate the pH of 2	2.0 M solution of H_2SO	4.	
(A) 2.0 (B) 1.0 (C) -2 (D) -0.30.	(A) 2.0	B 1.0	© -2	D -0.30.
科目名稱: 材料熱力學	科目名稱: 材料素	人力學		
每題為4選1,每一題答對得1.5分,答錯倒扣0.375分。	每題為4選1,每一	題答對得 1.5 分,	答錯倒扣 0.375 分。	
31. Assume $P_A^{\circ} = 0.06$ atm and $P_B^{\circ} = 0.07$ atm, when an ideal solution of 40% of A and 60% of B, the	31. Assume $P_A^\circ = 0.06atr$	n and $P_B^{\circ}=0.07$ atm, w	hen an ideal solution of 40%	6 of A and 60% of B, the
partial pressures of A and B are:	partial pressures of A	and B are:		
(A) 0.024 atm and 0.042 atm (B) 0.02 atm and 0.024 atm	(A) 0.024 atm and 0.04	42atm (B)	0.02 atm and 0.024 atm	
(C) 0.024 atm and 0.02 atm (D) 0.036 atm and 0.054 atm	$\bigcirc 0.024$ atm and 0.02	2atm D	0.036 atm and 0.054 atm	
32. When a negative-deviated solution consists 90% of A and 10% of B, assuming $P_A^O = 0.04$ atm and	32. When a negative-dev	iated solution consists 9	90% of A and 10% of B, ass	uming $P_A^O = 0.04$ atm and
$P_B^O = 0.05$ atm, which of the following partial pressure of A and B may be true:	$P_B^{O} = 0.05$ atm, which	of the following partia	l pressure of A and B may b	e true:
O.036atm and 0.005atm B 0.072atm and 0.01atm Compared to the second se	(A) 0.036atm and 0.0	05atm ®	0.072atm and 0.01atm	
© 0.018atm and 0.0025atm © 0.1atm and 0.0125atm	© 0.018atm and 0.0	025atm D	0.1atm and 0.0125atm	

: •

- 4 -

編號:		101			國立成	功大	學一()-4	8年.	度碩	士班	招生	三考古	式試力	E		共	11 1	頁,	第5頁
系所維	1別	:材料	科學及	又工程 學	影															
考試科	4日	: B科	目													÷	考試日期	期:02	25 • (箭次:2
33.	Wh	en an l	binary i	deal sol	ution w	ith \mathbf{X}_{A}	=0.6	X _B =	0.4,	assu	ming	\mathbf{P}_{A}^{C}) =0.0)4atn	n and	d P _B	0.0= ⁰)6 atr	n,	
	whi	ch of t	he follo	wing is	total va	apor pi	ressur	e (PA	$+P_B$):										
	(A)	0.05at	m,		₿ 0	.051at	m,		(0.0	052a	tm,			D	0.04	8atm	,		
34.	Wh	en A a	und B fo	rm Her	irian so	lution	behav	vior w	vith	very	stror	ng ne	egativ	ve de	viati	ion,	whicl	h one	e of	the
	folle	owing	stateme	ent is co	rrect:					2		U	Ŭ							
	A	there i	s strong	; attract	ion forc	e betw	veen A	and	в											
	B	there i	is no int	eractior	1 betwee	en A ai	ıd B													
	C	the pa	rtial pre	ssure of	feachc	ompor	nent is	s muc	h hi	gher	than	the]	Raou	ltian	solu	tion				
	D	none c	ofabove	is corr	ect															
35	In t	he Fili	ngham	diagrap	, two r	Paction		O-=∆	0-0	teen	er ela	nne)	R+(א=R	0.1	inter	sects	at		
50.	tem	neratu	re of 50	$0^{\circ}C.w$	hen A /	$AO_7 B$	BO	all nl	ozed	in a	clos	ed cl	hamh	er ar	nd ch	nang	ing th	ne		
	tem	peratu	re from	500°C	to 600°	C. wh	at col	ıld ha	nnei	1?	0.00			, er ur	14 01					
	A	more	B will b	e oxidi:	zed	.,		B)	mo	re A	will	be o	xidiz	ed						
	Õ	more	AO ₂ wil	l be red	uced			D	no	sign	ifica	nt ch	nange	;						
36.	Aft	er addi	ing oxid	le impu	rity into	a mix	ture c	of met	al A	and	meta	al ox	ide A	.O ₂ , i	in or	der t	o fur	ther of	oxid	ize
	met	al A	h <i>r</i> ium n	O rodu	aad			Ô	~~···	1:1		0:								
	0	metal	A will r	O_2 redu	vidized			® ©	equi no c	hana	un p e in .	equil	libriu	iseu im ní) .					
	S	metai	2 % VV111 1.		AIUIZCU			V		nang	C III I	equi	nonu	in p	02					
37.	Dut	ing th	e oxidat	ion of r	netal A	, as th	e temj	perati	ire i	ncrea	ises a	and p	oasse	s A's	melt	ting	point	, the		
	Elli	nghan	n lines s	hould lo	ook like															
	A	elbow	upwaro	1	₿ el	bow d	ownw	vard		C	curv	ve up	,	Ø) no	cha	nge			
38	In	most	ovidatio	n of me	stal as t	ha tarr	norat	ure d	ore	1040	tha a	anil	:hri.,	-	-		tial n	*000		
50.	will	most	OAIdutio	in or me	nai, as i	ne ten	iperai	uic u		1303,	the c	Հղու	ionu	III UA	ygei	i pai	uai p	10550	an e	
	A	increa	se (B) rem	ain the s	same	Ĉ	depe	nds	on th	e stri	uctu	re of	oxide	e	6	decre	ase		
	Ŭ			0			9	aope			0 500	u o t u i		onia	0	e		450		
20	N 4	- 4 - 1 1	- 1	1. 11	. · · · · · · · · · · · · · · · · · · ·	1.			. 1		•,									
37.		bag lo	is ingre	i stadin	1 m and 2	ibient		snme:		caus		_								
	Ø	has to	w equil		$\frac{1}{2}$		B	tends		orm	oxia	e								
	U	1145 111	gu cyull	uum	pO ₂		Y	none		100V	C									
	(背面	仍有	题目,	請繼	讀作	答)		i -											

編號:	1	01	國立成功大學一	○一學年度碩士班招	生考试试题	共11頁,第6頁
系所組	[別:	材料科學及	工程學系			
考試科	目:	B科目		118. cashacailtean an an an 118. an		考試日期:0225,節次:2
40.	Com	pare the oxidat	tion of metal A, as the te	mperature increases a	nd passes the melti	ng point of AO ₂ ,
	the E	llingham lines	should look like			
	(A) e	ntropy change	reduced	B elbow upward		
	© c	urve up		① extent of enthalpy	change increased	
41.	Inar	real gas system	n, when the van der Waal	s equation, PV ³ -(Pb+)	$RT)V^2+aV-ab=0$, is	applicable, the
	press	ure at the criti	cal temperature will be			
	@a/((27b ²)	®3b	©8a/(27bR)	$\textcircled{D}a/V^2$	
40	33 71.1	1 0.4 0.11		0		
42.	Whit	tropy	wing is not a state function	on? @enthalov	Doras	S117A
	Well	пору	Dileat	Centuarpy	Whies	Sure
43.	As a	n ideal gas und	lergoes a reversible isoth	nermal process from V	V_1 to V_2 , what is the	work done by the
	syste	em?	-			
	(AR)	$\ln(V_2/V_1)$	$(BRTln(V_1/V_2))$	$\bigcirc RTln(P_2/P_1)$	\bigcirc RTln(P ₁ /)	P ₂)
44	An ia	leal gas at 300)K has a volume of 15 lit	ers at a pressure of 15	atm Calculate the	work done by the
	syste	m for a revers	ible adiabatic expansion	to a pressure of 10 at	m	,
	(A) 0		®5130J	©4260J	©2150 J	
45.	An io	deal gas at 300	K has a volume of 15 lit	ers at a pressure of 15	5 atm. Calculate the	e heat entering or
		ng the system	BS1301	$ \bigcirc 42601 $	m_{21501}	
	00		0,1100	042003	@21303	
46.	An i	deal gas at 300	K has a volume of 15 lit	ters at a pressure of 15	atm. Calculate the	e change in the
	inter	nal energy for	a reversible adiabatic ex	pansion to a pressure	of 10 atm	
	A-5	130J	B -4260J	©-2150J	©2150J	
17	Ani	deal and at 200	What a valume of 15 lit	tors at a prossure of 15	Lotm Calculate the	abanga in the
······································	enth	alny when the	gas undergoes for a reve	rsible adjabatic expan	sion to a pressure (r = 10 atm
	A-2	365J	B-738J	©-8549J	D-1240J	51 10 atm
	÷			<u> </u>	•	
48.	The	initial state of	one mole of a monatomi	ic ideal gas is P= 10 at	tm and $T = 300K$. C	alculate the
	chan	ge in the entro	py of the gas for a const	ant-volume decrease i	in the pressure to 5	atm
	@ 2.	75J/K	B-2.75J/K	©8.65J/K	D-8 .65J/K	

- 6 -

编號: 1	D1	國立成功大學一○一	學年度碩士班招生考	試試題 共 /	1頁,第7頁
系所組別:	材料科學及工程	學系			
考試科目:	B科目			考試日期	:0225・節次:2
49. Calcu	late ΔS in expansion	ding 1 mol of ideal gas a	t 25°C from 10 to 100	cm ³	
(A) 5.3	1J/K	19.14 J/K	©37.24J/K	©28.43J/K	
50. The r super	nelting point of si -cooled liquid silv	lver is 1234K and the heaver at 1073K, what is the	at of fusion is 11.2 kJ/m entropy change of the s	ole. For the case of fay	reezing of
A-9 .	03J/K	B-23.15J/K	©1.31J/K	D-1.31J/K	
科目名 每題為	稱: 有機化 4選1,每一是	學 題答對得1分,答錯	倒扣 0.25 分。		
51. Polye (A) a dia	ester is made by water and a diaming	hat kind of monomers?	acid and a dialcohol		
© a di	anhydride and a d	iamine D a dia	llcohol and a diamine		
52. What	is the product of	the following reaction?			
		CH ₃ CH ₂ CH ₂ COC	$DH \xrightarrow{1. \text{ LiAlH}_4} ?$		
A CH ₃ C	CH ₂ CH ₂ CHO ®	CH ₃ CH ₂ CH ₂ COOCH ₃ C	CH ₃ CH ₂ CH ₂ CN	CH ₃ CH ₂ CH ₂ CH ₂ OH	
53. Whic	h compound is m	ore acidic?			
<u>م</u> (CH ₃ CH ₂ COOH	BrCH ₂ CH ₂ COOH	© BrCH ₂ COOH	D CH ₃ CH ₂ OH	
54. Whic A p	h of the following olyaniline	g polymers is a conductiv B polycarbonate	e polymer? © PVC	D polystyrene	
(背面仍有題	目,請繼續作答)	- 7 -		

編號:		101		國立成功大	學一○一學	年度碩士班招生考試訪	、超 共川頁,第9頁
糸 所約 考試利	且) 月 日	· 材料科 : B 科日	學人工程	学系			
7 8441	T I						考試日期,0225,即火:2
60.	Wh pro	ich feature tons in a co	e in the ¹ H ompound?	NMR spectru	m provides in	nformation about the ele	ctronic environment of the
	(A) 1	number of	signals	(B) integratio	n of signals	© splitting of signal	s (D) chemical shift
61.	A c des	hemical na cription is	ame has the not one of	ee parts in the them?	e IUPAC syst	em of nomenclature, wh	nich of the following
	(A)	Prefix	®) Suffix		© Functional group	D Parent name
62	Reg (A) (B) (C) (D)	garding to When carl Electron-r H ₃ O ⁺ is m Electron-r	the bond p bon bonds ich species ucleophilic ich atom g	olarity, which to a metal, the are called nu- ets electron pa	of the follow carbon bear cleophiles. air from elec	ving descriptions is corre s a partial negative charg tron-poor atom to form t	ect? ge (δ+). he bonding.
63	Reg (A) (B) (C) (D)	garding to it includes the π elect the electro it can be f	the functions a non-pole tron can be pregative a cound in the	nal groups wit ar bond. delocalized. tom bears a pa e Ketone.	th carbon sin artial negativ	gly bonded to an electro re charge.	negative atom,
64	A Res A B C D	sonance is explaining explaining explaining explaining	a very uses g the stabil g the possil g the chang g the enhar	ful concept for ity of molecul- ple isomer for e of molecula ced stability o	es based on t ns. r conformati of molecules	the delocalization of elect on. based on the number of	etron. π electrons.
65	A The B C D	e transition can be dir has a lowe frequently is related	ectly obser ectly obser er energy s determin to a chemin	lved in a chem wed tate than that o es the activation cal structure w	nical reaction of reactant on energy vith minimun	n n energy.	
66	For (For))))))))))))))))))))))))))))))))))))	the double the π bond the p orbit breaking π the electro 背面仍	e bond in a d must be b tals are per π bond can ons in σ bo 有題目。	n alkene, proken for the pendicular to cause the p or nd are delocal 請繼續作	rotation arou each other rbitals to be j ized. 答) - 9	und it. parallel	

編號:	101 國立成功大學一〇一學年度碩士班招生考試試題 共11頁,第10頁
系所組別	: 材料科學及工程學系
考試科目	: B科目 考試日期:0225,節次:2
67. WI	hich of the following compounds has a functional group with carbon-oxygen double bond?
A	Ethanol B Carboxylic acid C Isoprene D Cyclohexene.
68. Fo	r the alkanes,
A	the length of average C-C bond is about 124 ± 1 pm.
₿	the bond strength of C-C bond is of 255 ± 20 kJ/mol.
Ĉ	the strength of a typical C-H is around 500 ± 20 kJ/mol.
D	the length of C-H bound is of 109 ± 1 pm.
(0 E-	
69. FO	the standard conformation is more stable
	the salinged conformation is more stable.
B B	the eclipsed conformation is more stable.
	an different conformations are equally stable.
U U	the fotation barrier is considerable, which mints the possible extent of fotation around the single
	bound.
70 W	high of the following compounds has the cis trans stargoisomers
70. W	2-Methylpropene ®Isoprene @1.2-Dimethylcyclopropane @2-Methylbuta-1.3-diene
U.	2 Methylpropene @Isoprene @1,2-Dimethyleyeropropane @2 Methyloudu 1,5 dione.
71. Po	lyphenols in green tea and other nature products are often considered as excellent antioxidants.
Th	e chemistry is similar to the oxidation of hydroquinone, which converts the hydroquinone to:
Â	auinone (B) polyauinone (C) auinone aldhyde (D) henzoquinone
0	damente E kondamente E damente antidate E consoldamente
72. Ep	oxides represent the cyclic ethers with 3-membered rings. Which of the following descriptions is
IN	CORRECT?
A	the 3-membered ring contains the atoms of two carbons and one oxygen.
B	the strain of the 3-membered ring give epoxides unique chemical reactivity.
C	epoxides undergo only the base-catalyzed reaction, but not the acid-catalyzed reaction.
D	epoxides react with Grignard reagents
72 117	
75. W	$\widehat{\mathbf{R}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1$
& 0	$R-SH \rightarrow IIIIOI$ (B) $R-S-R \rightarrow Sulfate$ S- O_{2}^{2-} > persulfate (D) SO_{2}^{2-} > sulfapia acid
U	$5_2 \bigcirc 8 \rightarrow \text{ persuitate} \qquad \bigcirc 5 \bigcirc 4 \rightarrow suitonic actu$

- 10 -

编號:	101	國立成功大學一〇一學年度碩士班招生考試試題	共1 頁・第11頁
系所組別	: 材料科	斗學及工程學系	
考試科目	: B 科目		考試日期:0225,節次:2
74. W	hich descri	iption below about alcohols is INCORRECT?	
A	A primar	v alcohol undergoes the oxidation reaction and form aldehydes.	
B	A second	lary alcohol undergoes the oxidation reaction and form carboxylic ac	cids.
Ô	Dehydrat	tion of alcohols forms ethers.	
D	Dehydrat	tion of a tertiary alcohol form alkene.	
	-		
75. A	mercapto g	group represents the capturer of mercury. What is the reaction of the	nis mercapto group?
A	$R-NH_2 +$	$Mg \qquad \textcircled{B} R-NH_2 + Hg \qquad \textcircled{C} R-SH + Mg$	D R-SH + Hg
76. W	hich follov	wing description about carbonyl groups is INCORRECT:	
A (a carbony	yl group contains C=O bonding.	
B	a carbony	yl carbon atom is sp ² -hybridized.	
C	a carbony	yl compound is not planar due to the nonbonding electrons on oxyge	en.
D D	a carbony	yl group is polarized due to the high electro-negativity of oxygen.	
77. W	hich of the	e following organic solvents is INCORRECT:	
	THF = te	etrahydrofuran (B) IPA = isopropyl alcohol	
	Acetone	= propanal (D) DMF = N, N-dimethylformamide	
78. R-	NH ₂ adds	to C=O to form:	
		н н	
A	an amide	e, C-NR B an imine, C-NR	
C	an amide	\sim , $C=NR$ (D) an imine, $C=NR$	
79. H	ow do you	prepare Grignard reagents?	
(A	alcohols	react with Magnesium in ether solvent	
B	alcohols	react with Germanium in ether solvent	
C	alkyl hali	ides react with Magnesium in ether solvent	
D	alkyl hal	ides react with Germanium in ether solvent	
80. A	n acetyl gr	oup is:	
		0 	0
	0		Ĭ
	ÜH-C		~C
A	1130	· · · · · · · · · · · · · · · · · · ·	